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Abstract—Social hierarchy (i.e., pyramid structure of societies) is a fundamental concept in sociology and social network analysis. The

importance of social hierarchy in a social network is that the topological structure of the social hierarchy is essential in both shaping the

nature of social interactions between individuals and unfolding the structure of the social networks. The social hierarchy found in a

social network can be utilized to improve the accuracy of link prediction, provide better query results, rank web pages, and study

information flow and spread in complex networks. In this paper, we model a social network as a directed graph G, and consider the

social hierarchy as DAG (directed acyclic graph) of G, denoted as GD. By DAG, all the vertices in G can be partitioned into different

levels, the vertices at the same level represent a disjoint group in the social hierarchy, and all the edges in DAG follow one direction.

The main issue we study in this paper is how to find DAG GD in G. The approach we take is to find GD by removing all possible cycles

from G such that G ¼ UðGÞ [GD, where UðGÞ is a maximum Eulerian subgraph which contains all possible cycles. We give the

reasons for doing so, investigate the properties of GD found, and discuss the applications. In addition, we develop a novel two-phase

algorithm, called Greedy-&-Refine, which greedily computes an Eulerian subgraph and then refines this greedy solution to find the

maximum Eulerian subgraph. We give a bound between the greedy solution and the optimal. The quality of our greedy approach is

high. We conduct comprehensive experimental studies over 14 real-world datasets. The results show that our algorithms are at least

two orders of magnitude faster than the baseline algorithm.

Index Terms—Social hierarchy, social networks, DAG, Eulerian subgraph

Ç

1 INTRODUCTION

SOCIAL hierarchy refers to the pyramid structure of socie-
ties, with minority on the top and majority at the bottom,

which is a prevalent and universal feature in organizations.
Social hierarchy is also recognized as a fundamental charac-
teristic of social interactions, being well studied in both soci-
ology and psychology [16]. In recent years, social hierarchy
has attracted considerable attention and generates profound
and lasting influence in various fields, especially social net-
works. This is because the hierarchical structure of a popu-
lation is essential in shaping the nature of social interactions
between individuals and unfolding the structure of under-
lying social networks. Gould in [16] develops a formal theo-
retical model to model the emergence of social hierarchy,
which can accurately predict the network structure. By the
social status theory in [16], individuals with low status typi-
cally follow individuals with high status. Clauset et al. in [9]
develop a technique to infer hierarchical structure of a social
network based on the degree of relatedness between indi-
viduals. They show that the hierarchical structure can
explain and reproduce some commonly observed topologi-
cal properties of networks and can also be utilized to predict
missing links in networks. Assuming that underlying hier-
archy is the primary factor guiding social interactions,
Maiya and Berger-Wolf in [29] infer social hierarchy from

undirected weighted social networks based on maximum
likelihood. With temporal collaboration networks, Wang
et al. in [35] model the advisor-advisee relationship mining
problem utilizing a jointly likelihood objective function,
which can benefit applications such as visualization of gene-
alogy and expert finding. Dong et al. in [10] study the inter-
action of social status and social networks in an enterprise
and observe the tendency of high-status individuals to be
spanned as “structural holes” over their subordinates and
unveil the “rich club” effects between high-status individu-
als in enterprise networks. All the studies imply that social
hierarchy is a primary organizing principle of social net-
works, capable of shedding light on many phenomena. In
addition, social hierarchy is also used in many aspects of
social network analysis and data mining. For instance, social
hierarchy can be utilized to improve the accuracy of link
prediction [27], provide better query results [21], rank web
pages [17], study information flow and spread in complex
networks [1], [3], and relationship categorization [33]. A
comprehensive review of related topics can be found in [2].

In this paper, we focus on social networks that can be
modeled by directed graphs, because in many social net-
works (e.g., Google+, Weibo, Twitter), information flow and
influence propagate follow certain directions from vertices
to vertices. Given a social network as a directed graph G, its
social hierarchy can be represented as a directed acyclic
graph (DAG). By DAG, all the vertices in G are partitioned
into different levels (disjoint groups), and all the edges in the
cycle-free DAG follow one direction, as observed in social
networks that prestigious users at high levels are followed
by users at low levels and the prestigious users typically do
not follow their followers. Here, a level in DAG represents
the status of a vertex in the hierarchy the DAG represents.

The issue we study in this paper is how to find hierarchy
as a DAG in a general directed graph G which represents a
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social network. Given a graph G, there are many possible
ways to obtain a DAG. First, converting graph G into a
DAG, by contracting all vertices in a strongly connected
component in G as a vertex in DAG, does not serve the pur-
pose, because all vertices in a strongly connected compo-
nent do not necessarily belong to the same level in a
hierarchy. Second, a random DAG does not serve the pur-
pose, because it heavily relies on the way to select the verti-
ces as the start to traverse and the way to traverse.
Therefore, two random DAGs can be significantly different
in topology. Third, finding the maximum DAG of G is NP-
hard and approximating the maximum DAG within a factor
better than 1/2 is Unique Games hard [19]. The way we do
this is to find the DAG by removing all possible cycles from
G following [18]. In [18] Gupte et al. propose a way to
decompose a directed graph G into a maximum Eulerian
subgraph UðGÞ and DAG GD, s.t. G ¼ UðGÞ [GD. Here, all
possible cycles in G are in UðGÞ, and all edges in GD do not
appear in UðGÞ. We take the same approach to find DAG
GD for a graph G by finding the maximum Eulerian sub-
graph UðGÞ of G such that G ¼ UðGÞ [GD, as given in [18].

Main contributions: We summarize the main contributions
of ourwork as follows. First, unlike [18]which studies amea-
sure between 0 and 1 to indicate how close a given directed
graph is to a perfect hierarchy, we focus on the hierarchy
(DAG). In addition to the properties investigated in [18], we
show that GD found is representative, exhibits the pyramid
rank distribution. In addition,GD found can be used to study
social mobility and recover hidden directions of social rela-
tionships. Second, we significantly improve the efficiency of
computing themaximumEulerian subgraph UðGÞ. Note that

the time complexity of the BF-U algorithm [18] is Oðnm2Þ,
where n and m are the numbers of vertices and edges,
respectively. Such an algorithm is impractical, because it can
only work on small graphs. We propose a new algorithm

with time complexityOðm2Þ, and propose a novel two-phase
algorithm, called Greedy-&-Refine, which greedily com-
putes an Eulerian subgraph in OðnþmÞ and then refines
this greedy solution to find the maximumEulerian subgraph

in Oðcm2Þ where c is a very small constant less than 1. The
quality of our greedy approach is high. Finally, we conduct
extensive performance studies using 14 real-world datasets
to evaluate our algorithms, and confirm our findings. The
full paper of this work can be found in CoRR [28].

Further related works: Ball and Newman [4] analyze
directed networks between students with both reciprocated
and unreciprocated friendships and develop a maximum-
likelihood method to infer ranks between students such that
most unreciprocated friendships are from lower-ranked
individuals to higher-ranked ones, corresponding to status
theory [16]. Leskovec et al. in [24], [25] investigate signed
networks and develop an alternate theory of status in place
of the balance theory frequently used in undirected and
unsigned networks to both explain edge signs observed and
predict edge signs unknown. Influence has been widely
studied [7], finding social hierarchy provides a new per-
spective to explore the influence given the existence of a
social hierarchy.

Extracting the MAX ACYCLIC SUBGRAPH from a given
directed graph G is one way to find the social hierarchy
behind G, since it is to find an acyclic subgraph with the

most edges for a given graph. However, Karp in [20] shows
that it is NP-hard. Newman shows that it remains NP-hard
on graphs with maximum degree 3 and is NP-hard to

approximate within a factor greater than 65
66 in [31]. Recently,

Guruswami et al. [19] prove that it is Unique Games hard to
approximate the MAX ACYCLIC SUBGRAPH problem
within a factor better than 1=2. Other approaches to obtain
DAGs includes [11] which condenses all vertices in a SCC
into a supernode and [32] that constructs DAGs with
edges/paths to maximize influence propagation probabili-
ties, providing influence probability on each edge.

Eulerian graphs have been well studied in the theory
community [6], [8], [12], [13], [26]. For example, in [12],
Fleischner gives a comprehensive survey on this topic. In
[13], the same author surveys several applications of Euler-
ian graphs in graph theory. Another closely related concept
is super-Eulerian graph, which contains a spanning Euler-
ian subgraph [6], [8], [26], here a spanning Eulerian sub-
graph means an Eulerian subgraph that includes all
vertices. The problem of determining whether or not a
graph is super-Eulerian is NP-complete [8]. Most of these
works mainly focus on the properties of Eulerian sub-
graphs. There are not much related works on computing
the maximum Eulerian subgraphs for large graphs. To the
best of our knowledge, the only one in the literature is done
by Gupte, et al. in [18]. However, the time complexity of
their algorithm is Oðnm2), which is clearly impractical for
large graphs.

Organization: In Section 2, we focus on the properties of
the social hierarchy found after giving some useful concepts
on maximum Eulerian subgraph, and discuss the applica-
tions. In Section 3, we propose a new algorithmDS-U of time
complexity Oðm2Þ, and treat it as the baseline algorithm. We
present a new two-phase algorithm GR-U for finding the
maximum Eulerian subgraph, as well as its analysis in Sec-
tion 4. Extensive experimental studies are reported in Sec-
tion 5. Finally, we conclude this work in Section 6.

2 THE HIERARCHY

Consider an unweighted directed graph G ¼ ðV;EÞ, where
V ðGÞ and EðGÞ denote the sets of vertices and directed
edges of G, respectively. We use n ¼ jV ðGÞj andm ¼ jEðGÞj
to denote the number of vertices and edges of graph G,
respectively. In G, a path p ¼ ðv1; v2; . . . ; vkÞ represents a
sequence of edges such that ðvi; viþ1Þ 2 EðGÞ, for each
vi ð1 � i < kÞ. The length of path p, denoted as lenðpÞ, is the
number of edges in p. A simple path is a path ðv1; v2; . . . ; vkÞ
with k distinct vertices. A cycle is a path where a same ver-
tex appears more than once, and a simple cycle is a path
ðv1; v2; . . . ; vk�1; vkÞ where the first k� 1 vertices are distinct
while vk ¼ v1. For simplicity, below, we use V and E to
denote V ðGÞ and EðGÞ of G, respectively, when they are
obvious. For a vertex vi 2 V ðGÞ, the in-neighbors of vi,
denoted as NIðviÞ, are the vertices that link to vi, i.e.,
NIðviÞ ¼ fvj j ðvj; viÞ 2 EðGÞg, and the out-neighbors of vi,
denoted as NOðviÞ, are the vertices that vi links to, i.e.,
NOðviÞ ¼ fvj j ðvi; vjÞ 2 EðGÞg. The in-degree dIðviÞ and
out-degree dOðviÞ of vertex vi are the numbers of edges that
direct to and from vi, respectively, i.e., dIðviÞ ¼ jNIðviÞj and
dOðviÞ ¼ jNOðviÞj.
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A strongly connected component (SCC) is a maximal
subgraph of a directed graph in which every pair of vertices
vi and vj are reachable from each other.

A directed graph G is an Eulerian graph (or simply
Eulerian) if for every vertex vi 2 V ðGÞ, dIðviÞ ¼ dOðviÞ. An
Eulerian graph can be either connected or disconnected.
An Eulerian subgraph of a graph G is a subgraph of G,
which is Eulerian, denoted as GU . The maximum Eulerian
subgraph of a graph G is an Eulerian subgraph with the
maximum number of edges, denoted as UðGÞ. Given a
directed graph G, we focus on the problem of finding its
maximum Eulerian subgraph, UðGÞ, which does not need to
be connected. Note that the problem of finding the maxi-
mum Eulerian subgraph (UðGÞ) in a directed graph can be
solved in polynomial time, whereas the problem of finding
the maximum connected Eulerian subgraph is NP-hard [5].
The following example illustrates the concept of maximum
Eulerian subgraph.

Example 2.1. Fig. 1 shows a graphG ¼ ðV;EÞwith 14 vertices
and 22 edges. Its maximum Eulerian subgraph UðGÞ is a
subgraph of G, where its edges are in solid lines:
EðUðGÞÞ ¼ fðv1; v2Þ; ðv2; v4Þ; ðv4; v3Þ; ðv3; v5Þ; ðv5; v1Þ;ðv4; v6Þ;
ðv6; v4Þ; ðv3; v6Þ; ðv6; v3Þ; ðv6;v8Þ; ðv8; v11Þ; ðv11; v12Þ; ðv12;
v13Þ; ðv13;v14Þ; ðv14; v7Þ; ðv7; v6Þg, and V ðUðGÞÞ is the set of
vertices that appear inEðUðGÞÞ.
The main issue here is to find a hierarchy of a directed

graph G as DAG GD by finding the maximum Eulerian sub-
graph UðGÞ for a directed graph G. With UðGÞ found, GD

can be efficiently found due to G ¼ UðGÞ [GD, and
EðUðGÞÞ \EðGDÞ ¼ ;. We discuss the properties of the hier-
archy GD and the applications.

The representativeness: The maximum Eulerian subgraph
UðGÞ for a general graphG is not unique. A natural question
is how representative GD is as the hierarchy. Note thatGD is
only unique w.r.t UðGÞ found. Below, we show GD identi-
fied by an arbitrary UðGÞ is representative based on a notion
of strictly-higher defined between two vertices in GD, over a
ranking rð�Þ where rðuÞ < rðvÞ for each edge ðu; vÞ 2 GD.
Here, for two vertices u and v, a larger rank implies a vertex
is in a higher status in a follower relationship, and u is
strictly-higher than v if rðuÞ > rðvÞ and u is reachable from v,
i.e., there is a directed path from v to u in GD.

Theorem 2.1. Let GD1
and GD2

be two DAGs for G such that
G ¼ U1ðGÞ [GD1

¼ U2ðGÞ [GD2
. There are no vertices u

and v such that u is strictly-higher than v in GD1
whereas v

is strictly-higher than u in GD2
.

The proof can be found in [28].

A case study: With the hierarchy (DAG GD) found, sup-
pose we assign every vertex u a non-negative rank rðuÞ such
that rðuÞ < rðvÞ for any edge ðu; vÞ 2 GD, then rð�Þ is a
strictly-higher rank. In this paper, we assign each vertex u a
rank rðuÞ as follows:

rðuÞ ¼ 0 if dIðuÞ in GD is 0;

maxfrðvÞ þ 1jðv; uÞ 2 GDg otherwise.

(

It is noteworthy that isolated vertices in GD are assigned to
rank 0. In general, in a graph, there are large DAGs, small
DAGs, and isolated vertices. Some vertices with
dOðvÞ ¼ dIðvÞ are isolated vertices but not all vertices with
dOðvÞ ¼ dIðvÞ are isolated vertices in DAG GD found. Fig. 2
illustrates a subgraph extracted from Twitter, where the
dashed edges represent the maximum Eulerian subgraph.
Note that the graphs in Figs. 1 and 2 are different. After
removing the maximum Eulerian subgraph, all the vertices
except v6 exist in DAG GD. The number of isolated vertices
for the large graphs tested are shown in Tables 1 and 2, as
jV j � jV ðGDÞj. The numbers are less than 10 percent of the
total number of vertices in G, and such vertices are in the
middle/low position in the hierarchy. When the number of
isolated vertices is large, jEðUðGÞÞj=jEj intends to be large
(refer to Tables 1 and 2). This implies that all vertices are in
similar rank, and therefore the graph G does not exhibit a
social hierarchy as also observed by Fleischner [13]. In the
datasets wiki-vote, Gnutella, web-Google, etc. the DAG GD

covers the majority of vertices in V ðGÞ, whereas in graphs
with high jEðUðGÞÞj=jEj, e.g., Slashdot0811 and Slash-
dot0902, they do not exhibit explicit hierarchy structures. In
such cases, like Slashdot0811 and Slashdot0902, assigning

Fig. 1. Illustration of the maximum Eulerian subgraph.

Fig. 2. A subgraph extracted from Twitter ( 6¼ Fig. 1).

TABLE 1
To Study Social Mobility

Graph jV j jEj jV ðUðGÞÞj jEðUðGÞÞj jV ðGDÞj
Gplus0 23,046 115,090 2,833 6,271 22,556
Gplus1 51,181 512,281 14,797 70,537 50,140
Gplus2 84,690 2,867,781 51,605 770,854 82,348
Gplus3 99,630 8,289,203 87,941 3,644,147 94,604

Weibo0 97,906 2,431,525 73,581 850,136 96,765
Weibo1 97,954 2,446,002 73,713 855,131 96,833
Weibo2 98,004 2,463,050 73,911 861,729 96,902
Weibo3 98,057 2,479,140 74,094 868,044 96,969
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most vertices with the similar ranks is reasonable. Note that
other rankings, for instance the ranking proposed in [18],
generate similar results with marginal difference.

To show whether such ranking reflects the ground truth,
as a case study, we conduct testing using Twitter, where the
celebrities are known, for instance, refer to Twitter Top 100
(http://twittercounter.com/pages/100). We sample a sub-
graph among 41.7 million users (vertices) and 1.47 billion
relationships (edges) from Twitter social graph G crawled
in 2009 [22]. In brief, we randomly sample five vertices in
the celebrity set given in Twitter, and then sample 1,000,000
vertices starting from the five vertices as seeds using ran-
dom walk sampling [23]. We construct an induced sub-
graph G0 of the 1,000,000 vertices sampled from G, and we
uniformly sample about 10,000,000 edges from G0 to obtain
the sample graph G, which contains 759,105 vertices and
11,331,061 edges. In G, we label a vertex u as a celebrity, if u
is a celebrity and has at least 100,000 followers in G. There
are 430 celebrities, we manually verified, in G including
Britney Spears, Oprah Winfrey, Barack Obama, etc. We
compute the hierarchy (GD) of G using our approach and
rank vertices in GD. The hierarchy reflects the truth: 88 per-
cent celebrities are in the top 1 percent vertices and 95 per-
cent celebrities in the top 2 percent vertices. In
consideration of efficiency, we can approximate the exact
hierarchy with a greedy solution obtained by Greedy in Sec-
tion 4. In the approximate hierarchy, 85 percent celebrities
are in the top 1 percent vertices and 93 percent celebrities in
the top 2 percent vertices.

The pyramid structure of rank distribution is one of the most
fundamental characteristics of social hierarchy. We test the
social networks: wiki-Vote, Epinions, Slashdot0902, Pokec,
Google+, Weibo. The details about the datasets are in
Tables 1 and 2. The rank distribution derived from hierar-
chy GD, shown in Fig. 3a, indicates the existence of pyramid
structure, while the rank distributions derived from a ran-
dom DAG (Fig. 3b), by contracting SCCs (Fig. 3c) and from

an 1
2-approximation maximum DAG (Fig. 3d) do not show

such properties. Here, the x-axis is the rank where a high
rank means a high status, and the y-axis is the percentage in
a rank over all vertices. By analyzing the vertices, u, in G
over the difference between in-degree and out-degree, i.e.,
dIðuÞ � dOðuÞ, it reflects the fact that those vertices u with

negative dIðuÞ � dOðuÞ are always at the bottom of GD,
whereas those vertices in the higher rank are typically with
large positive dIðuÞ � dOðuÞ values. Specifically, we divide
all vertices into five equal groups in terms of rank and
degree difference (dIðuÞ � dOðuÞ) respectively, then
93.75 percent (94.11 percent) of the top (bottom) 20 percent
in terms of rank appear in the corresponding top (bottom)
20 percent in terms of degree difference.

The social mobility: With the DAG GD found, we can fur-
ther study social mobility over the social hierarchy GD rep-
resents. Here, social mobility is a fundamental concept in
sociology, economics and politics, and refers to the move-
ment of individuals from one status to another. It is impor-
tant to identify individuals who jump from a low status (a
level in GD) to a high status (a level in GD). We conduct
experimental studies using the social network Google+
(http://plus.google.com) crawled from Jul. 2011 to Oct.
2011 [14], [15], and Sina Weibo (http://weibo.com) crawled
from 28 Sep. 2012 to 29 Oct. 2012 [36]. For Google+ and
Weibo, we randomly extract 100,000 vertices, respectively,
and then extract all edges among these vertices in 4 time
intervals during the period the datasets are crawled, as
shown in Table 1.

We show social mobility in Fig. 4. We compare two snap-
shots, G1 and G2, and investigate the social mobility from
G1 to G2. For Google+, G1 and G2 are Gplus0 and Gplus1,

Fig. 3. Rank distribution.

TABLE 2
Summary of Real Datasets

Graph jV j jEj jV ðUðGÞÞj jEðUðGÞÞj jV ðGDÞj
wiki-Vote 7,115 103,689 1,286 17,676 7,114
Gnutella 62,586 147,892 11,952 18,964 62,519
Epinions 75,879 508,837 33,673 264,995 67,803
Slashdot0811 77,360 828,159 70,849 734,021 33,682
Slashdot0902 82,168 870,159 71,833 748,580 44,611
web-NotreDame 325,729 1,469,679 99,120 783,788 318,964
web-Stanford 281,903 2,312,497 211,883 691,521 252,983
amazon 403,394 3,387,388 399,702 1,973,965 372,309
Wiki-Talk 2,394,385 5,021,410 112,030 1,083,509 2,368,590
web-Google 875,713 5,105,039 461,381 1,841,215 837,275
web-BerkStan 685,230 7,600,595 478,774 2,068,081 620,881
Youtube 1,138,499 4,945,382 534,668 3,954,923 1,016,342
Flickr 1,715,255 22,613,980 1,401,648 15,882,577 919,309
Pokec 1,632,803 30,622,560 1,297,362 20,911,934 1,562,696
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and for Weibo, G1 and G2 are Weibo0 and Weibo1. For G1,
we divide all vertices into five equal groups in terms of the
ranking derived. The top 20 percent go into group 5, and
the second 20 percent go to group 4, for example. In Fig. 4,
the x-axis shows the five groups for G1. Consider the num-
ber of vertices in a group as 100 percent. In Fig. 4, we show
the percentage of vertices in one group moves to another
group in G2. Figs. 4a and 4b show the results for Google+
and Weibo. Some observations can be made. Google+ is a
new social network when crawled since it starts from Jun.
29, 2011, and Weibo is a rather mature social network since
it starts from Aug. 14, 2009. From Fig. 4a, many vertices
move from one status to another, whereas from Fig. 4b, only
a very small number of vertices move from one status to
another. Similar results can be observed from approximate
hierarchies, by our greedy solution Greedy given in Section 4,
as shown in Figs. 4c and 4d. Those moved to/from the high-
est level deserve to be investigated.

Recovering the hidden directions is to identify the direction
of an edge if the direction of the edge is unknown [37]. The
directionality of edges in social networks being recovered is
important in many social analysis tasks. We show that our
approach has advantage over the semi-supervised approach
(SM-ReDirect) in [37]. Here, the task is using the given
20 percent directed edges as training data to recover the
directions for the remaining edges. In our approach, we
construct a graph G from the training data, and identify GD

by G ¼ UðGÞ [GD. With the ranking rð�Þ over the vertices,
we predict the direction of an edge ðu; vÞ is from u to v if
rðvÞ > rðuÞ. It is worth noting that rðuÞ for vertex u that are
not covered by the training set is randomly assigned accord-
ing to the rank distribution. Take Slashdot and Epinion
datasets used [37], our approach outperforms the matrix-
factorization based SM-ReDirect both in terms of accuracy
and efficiency. For Slashdot, our prediction accuracy is
0.7759 whereas SM-ReDirect is 0.6529. For Epinion, ours is
0.8285 whereas SM-Redirect is 0.7118. Using approximate
hierarchy, our accuracy is 0.7682 for Slashdot and 0.8277 for
Epinion, respectively. In addition, we takeG2 as the training
set and predict the directions of edges inG3 nG2, the predic-
tion accuracy is 0.7108 for Google+ and 0.8006 for Weibo,
respectively.

3 A NEW ALGORITHM

To address the scalability problem of BF-U [18], we pro-
pose a new algorithm, called DS-U. Different from BF-U
which starts by finding a negative cycle using the Bell-
man-Ford algorithm in every iteration, DS-U finds a nega-
tive cycle only when necessary with condition. In brief, in
every iteration, when necessary, DS-U invokes an algo-
rithm FindNC (short for find a negative cycle) to find a
negative cycle while relaxing vertices following DFS
order. Applying amortized analysis [34], we prove the
time complexity of DS-U, is Oðm2Þ to find the maximum
Eulerian subgraph UðGÞ.

Algorithm 1. DS-U (G)

Input: A graph G ¼ ðV;EÞ
Output: Two subgraphs of G, UðGÞ and GD (G ¼ UðGÞ [GD)
1: for each edge ðvi; vjÞ in EðGÞ do wðvi; vjÞ  �1;
2: for each vertex u in V ðGÞ do dstðuÞ  0, relaxðuÞ  true,

posðuÞ  0;
3: while there is a vertex u 2 V ðGÞ such that relaxðuÞ ¼ true

do
4: SV  ;, SE  ;,NV  ;;
5: if FindNC (G, u) then
6: while SV .top() 6¼ NV do
7: SV .pop(); ðvi; vjÞ  SE .pop();
8: wðvi; vjÞ  �wðvi; vjÞ;
9: Reverse the direction of the edge ðvi; vjÞ to be ðvj; viÞ;
10: end while
11: SV .pop(); ðvi; vjÞ  SE .pop();
12: wðvi; vjÞ  �wðvi; vjÞ;
13: Reverse the direction of the edge ðvi; vjÞ to be ðvj; viÞ;
14: end if
15: end while
16: GD is a subgraph that contains all edges with weight �1;
17: UðGÞ is a subgraph containing the reversed edges with

weight þ1;

Algorithm 2. FindNC (G, u)

1: SV .push(u);
2: for each edge ðu; vÞ starting at posðuÞ in EðGÞ do
3: posðuÞ  posðuÞ þ 1;
4: if dstðuÞ þ wðu; vÞ < dstðvÞ then
5: dstðvÞ  dstðuÞ þ wðu; vÞ;
6: relaxðvÞ  true, posðvÞ  0;
7: if v is not in SV then
8: SE .push(ðu; vÞ);
9: if FindNC (G, v) then return true; end if
10: else
11: SE .push(ðu; vÞ);NV  v; return true;
12: end if
13: end if
14: end for
15: relaxðuÞ  false;
16: SV .pop(); SE .pop() if SE is not empty; return false;

The DS-U algorithm is outlined in Algorithm 1, which
invokes FindNC (Algorithm 2) to find a negative cycle.
Here, FindNC is designed based on the same idea of relaxing
edges as used in the Bellman-Ford algorithm. In addition to
edge weight wðvi; vjÞ, we use three variables for every

Fig. 4. Social mobility result from hierarchy.
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vertex u, relaxðuÞ, posðuÞ, and dstðuÞ. Here, relaxðuÞ is a
Boolean variable indicating whether there are out-going
edges from u that may need to relax to find a negative cycle.
It will try to relax an edge from u further when
relaxðuÞ ¼ true. When relaxing from u, posðuÞ records the
next vertex v in NOðuÞ (maintained as an adjacency list) for
the edge ðu; vÞ to be relaxed next. It means that all edges
from u to any vertex before posðuÞ has already been relaxed.
dstðuÞ is an estimation on the vertex u which decreases
when relaxing. When dstðuÞ decreases, relaxðuÞ is reset to
be true and posðuÞ is reset to be 0, since all its out-going
edges can be possibly relaxed again. Initially, inDS-U, every
edge weight wðvi; vjÞ is initialized to �1, and the three varia-
bles, relaxðuÞ, posðuÞ, and dstðuÞ, on every vertex u are ini-
tialized to true, 0, and 0, respectively. All wðvi; vjÞ, relaxðuÞ,
posðuÞ, and dstðuÞ are used in FindNC to find a negative
cycle following the main idea of Bellman-Ford algorithm in
DFS order. A negative cycle, found by FindNC while relax-
ing edges, is maintained using a vertex stack SV and an
edge stack SE together with a variable NV , where NV main-
tains the first vertex of a negative cycle. In DS-U, by pop-
ping vertex/edges from Sv/SE until encountering the
vertex in NV , a negative cycle can be recovered. As shown
in Algorithm 1, in the while statement (Lines 3–15), for
every vertex u in V ðGÞ, only when there is a possible relax
(relaxðuÞ ¼ true) and there is a negative cycle found by the
algorithm FindNC, it will reverse the edge direction and
update the edge weight, wðvi; vjÞ, for each edge ðvi; vjÞ in
the negative cycle (Lines 6–13).

Theorem 3.1. Algorithm 1 correctly finds the maximum Eulerian
subgraph UðGÞ when it terminates.

Theorem 3.2. Time complexity of DS-U (G) is Oðm2Þ.
Theorem 3.1 and Theorem 3.2 are proved in [28].
Consider Algorithm 1. In each iteration of the while loop,

only a small part of the graph is traversed and most edges
are visited at most twice. Thus, each iteration can be approx-
imately bounded as OðmÞ, and the time complexity of DS-U
is approximated as OðK �mÞ, whereK is the number of iter-
ations, bounded by jEðUðGÞÞj � m. In the following discus-
sion, we will analyze the time complexity of algorithms
based on the number of iterations.

4 THE OPTIMAL: GREEDY-&-REFINE

DS-U reduces the time complexity of BF-U to Oðm2Þ, but it
is still very slow for large graphs. To further reduce the run-
ning time of DS-U, we propose a new two-phase algorithm
which is shown to be two orders of magnitude faster than
DS-U. Below, we first introduce an important observation
which can be used to prune many unpromising edges.
Then, we will present our new algorithms as well as theoret-
ical analysis.

Let S be a set of strongly connected components (SCCs)
of G, such that S ¼ fG1; G2; . . .g, where Gi is an SCC of G,
Gi � G, and Gi \Gj ¼ ; for i 6¼ j. We show that for any
edge, if it is not included in any SCCGi of G, then it cannot
be contained in the maximum Eulerian subgraph UðGÞ.
Therefore, the problem of finding the maximum Eulerian
subgraph of G becomes a problem of finding the maximum
Eulerian subgraph of each Gi 2 S, since the union of the

maximum Eulerian subgraph of Gi 2 S, 1 � i � jSj, is the
maximum Eulerian subgraph of G.

Lemma 4.1. An Eulerian graph G can be divided into several
edge disjoint simple cycles.

Theorem 4.1. LetG be a directed graph, and S ¼ fG1; G2;. . .g be
a set of SCCs of G. The maximum Eulerian subgraph of G,
UðGÞ ¼ S

Gi2SUðGiÞ.
The proof of Lemma 4.1 and Theorem 4.1 are in [28].
Below, we discuss how to find the maximum Eulerian

subgraph for each strongly connected component (SCC) Gi

of G. In the following discussion, we assume that a graph G
is an SCC itself.

We can use DS-U to find the maximum Eulerian sub-
graph for an SCC G. However, DS-U is still too expensive
to deal with large graphs. The key issue is that the number
of iterations in DS-U (Algorithm 1, Lines 3–15), can be very
large when the graph and its maximum Eulerian subgraph
are both very large. Since in most iterations, the number of
edges with weight þ1 increases only by 1, it takes almost
jEðUðGÞÞj iterations to get the optimal number of edges in
the maximum Eulerian subgraph UðGÞ.

Algorithm 3. GR-U (G)

1: Compute SCCs of G, S ¼ fG1; G2; . . .g;
2: for each Gi 2 S do
3: eUðGiÞ  Greedy (Gi);
4: Move all cycles found in Gi � eUðGiÞ to eUðGiÞ; {Make

Gi � eUðGiÞ acyclic}
5: UðGiÞ  Refine ( eUðGiÞ, Gi);
6: end for
7: return

S jSj
i¼1UðGiÞ;

In order to reduce the number of iterations, we propose a
two-phase Greedy-&-Refine algorithm, abbreviated by GR-
U. Here, a Greedy algorithm computes an Eulerian subgraph
of G, denoted as eUðGÞ, and a Refine algorithm refines the

greedy solution eUðGÞ to get the maximum Eulerian sub-

graph UðGÞ, which needs at most jEðUðGÞÞj � jEð eUðGÞÞj
iterations. The GR-U algorithm is given in Algorithm 3, and
an overview is shown in Fig. 5. In Algorithm 3, it first com-
putes all SCCs (Line 1). For each SCC Gi, it computes an

Eulerian subgraph using Greedy, denoted as eUðGiÞ (Line 3).
In Greedy, in every iteration l (1 � l � lmax), it identifies a
subgraph by an l-Subgraph algorithm, and further deletes/
reverses all specific length-l paths called pn-paths which we
will discuss in details by DFS. Note lmax is a small number.

After computing eUðGiÞ, Gi � eUðGiÞ is near acyclic, and it

moves all cycles from Gi � eUðGiÞ to eUðGiÞ (Line 4). Finally,

it refines eUðGiÞ to obtain the optimal UðGiÞ by calling Refine

Fig. 5. An overview of Greedy-&-Refine.
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(Line 5). The union of all UðGiÞ is the maximum Eulerian
subgraph for G. Below, we first list some important con-
cepts introduced in the algorithm and analysis parts, and
then we shall detail the greedy algorithm and refine algo-
rithm, respectively.

4.1 The Greedy Algorithms

Given a graphG, we propose two algorithms to obtain an ini-

tial Eulerian subgraph eUðGÞ. The first algorithm is denoted
as Greedy-D (Algorithm 4), which deletes edges from G to

make dIðvÞ ¼ dOðvÞ for every vertex v in eUðGÞ. The second
algorithm is denoted as Greedy-R (Algorithm 7), which
reverses edges instead of deletion to the same purpose. We
use Greedy when we refer to either of these two algorithms.

By definition, the resulting eUðGÞ is an Eulerian subgraph of

G. The more edges we have in eUðGÞ, the closer the resulting
subgraph eUðGÞ is to UðGÞ. We discuss some notations below.

The vertex label: For each vertex u in G, we define a vertex
label on u, labelðuÞ ¼ dOðuÞ � dIðuÞ. If labelðuÞ ¼ 0, it means
that u can be a vertex in an Eulerian subgraph without any
modifications. If labelðuÞ 6¼ 0, it needs to delete/reverse
some adjacent edges to make labelðuÞ zero.

The pn-path: We also define a positive-start and negative-
end path between two vertices, u and v, denoted as
pn-pathðu; vÞ. Here, pn-pathðu; vÞ is a path p ¼ ðv1; v2; . . . ;
vlÞ, where u ¼ v1 and v ¼ vl with the following conditions:
labelðuÞ > 0, labelðvÞ < 0, and all labelðviÞ ¼ 0 for
1 < i < l. Clearly, by this definition, if we delete all the
edges in pn-pathðu; vÞ, then labelðuÞ decreases by 1, labelðvÞ
increases by 1, and all intermediate vertices in pn-pathðu; vÞ
will have their labels as zero. To make all vertex labels being
zero, the total number of such pn-paths to be deleted/
reversed isN ¼P

labelðuÞ> 0 labelðuÞ.
The transportation graph GT : A transportation graph GT of

G is a graph such that V ðGT Þ ¼ V ðGÞ and EðGT Þ ¼ fðu;
vÞ j ðv; uÞ 2 EðGÞg.

The level and rlevel: levelðvÞ is the shortest distance from
any vertex u with a positive label, labelðuÞ > 0, in G.
rlevelðvÞ is the shortest distance from any vertex u with a

positive label, labelðuÞ > 0, in GT . Note rlevelðvÞ is the
shortest distance to any vertex u with a negative label,
labelðuÞ < 0, in G.

Algorithm 4. Greedy-D (G)

1: l 1; G0  G;
2: while some vertex u 2 G0 with labelðuÞ > 0 do
3: G0  PN-path-D (G0, l); l lþ 1;
4: end while
5: return G0;

4.1.1 The Greedy-D Algorithm

Below, we first concentrate on Greedy-D (Algorithm 4). Let
G0 be G (Line 1). In the while loop (Lines 2-4), it repeatedly
deletes all pn-paths starting from length l ¼ 1 by calling an
algorithm PN-path-D (Algorithm 5) until no vertex u in G0

with a positive value (labelðuÞ > 0).

Example 4.1. Consider graph G in Fig. 6. Three vertices, v2,
v4, and v8, in double cycles, have a labelþ 1, and three

other vertices, v1, v3, and v7, in dashed cycles, have a
label�1. Initially, l ¼ 1, Greedy-D (Algorithm 4) deletes
pn-pathðv2; v3Þ, making labelðv2Þ ¼ labelðv3Þ ¼ 0. When
l ¼ 2, pn-pathðv4; v1Þ ¼ ðv4; v3; v1Þ is deleted. Finally,
when l ¼ 5, pn-pathðv8; v7Þ ¼ ðv8; v11; v12; v13; v14; v7Þ will

be deleted. In Fig. 6, the graph with solid edges is eUðGÞ
or the graph G0 returned by Algorithm 4. It is worth men-
tioning that for the same graph G, DS-U needs 10 itera-

tions. From the Eulerian subgraph eUðGÞ obtain by
Greedy, it only needs at most 2 additional iterations to get
the maximum Eulerian subgraph.

It is worth noting that eUðGÞ is not optimal. Some edges ineUðGÞmay not be in the maximum Eulerian subgraph, while
some edges deleted should appear in UðGÞ. In next section,
we will discuss how to obtain the maximum Eulerian sub-

graph UðGÞ from the greedy solution eUðGÞ.
Algorithm 5. PN-path-D (G, l)

1: Gl  l-Subgraph (G, l);
2: Enqueue all vertices u 2 V ðGlÞ with labelðuÞ > 0 into

queue Q;
3: while Q 6¼ ; do
4: u Q.top();
5: Following DFS starting from u over Gl, traverse unvis-

ited edges and mark them “visited”; let the path from
u to v be pn-path ðu; vÞ, when it reaches the first vertex
v in Gl with levelðvÞ ¼ l;

6: if pn-path ðu; vÞ 6¼ ; then
7: delete all edges in pn-pathðu; vÞ from G;
8: labelðuÞ  labelðuÞ � 1; labelðvÞ  labelðvÞ þ 1;
9: if labelðuÞ ¼ 0 then Q.dequeue();
10: else
11: Q.dequeue();
12: end if
13: end while
14: return G;

Finding all pn-paths with length l: The PN-path-D algorithm
is shown in Algorithm 5. In brief, for a given graph G, PN-
path-D first extracts a subgraph Gl � G which contains all
pn-paths of length l that are possible to be deleted from G
by calling an algorithm l-Subgraph (Algorithm 6) in Line 1.
In other words, all edges in EðGÞ but not in EðGlÞ cannot
appear in any pn-paths with a length � l. Based on Gl

obtained, PN-path-D deletes pn-paths from G (not from Gl)
with additional conditions (in Lines 2–13). Let G0l be a sub-
graph of Gl that includes all edges appearing in pn-paths of
length l to be deleted in PN-path-D. PN-path-D will return a
subgraph G nG0l as a subgraph of G, which will be used in

Fig. 6. An Eulerian subgraph by Greedy for G in Fig. 1.
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the next run in Greedy-D for deleting pn-paths with length
lþ 1.

We discuss the l-Subgraph algorithm (Algorithm 6),
which extracts Gl from G by BFS (breadth-first-search) tra-
versing G twice. In the first BFS (Lines 4-6), it adds a virtual
vertex s, and adds an edge ðs; uÞ to every vertex u with a
positive label (labelðuÞ > 0) in G. Then, it assigns a levelto
every vertex in G as follows. Let levelðsÞ be �1. By BFS, it
assigns levelðuÞ to be levelðparentðuÞÞ þ 1, where parentðuÞ
is the parent vertex of u following BFS. In the second BFS
(Lines 7-10), it conceptually considers the transposition

graph GT of G by reversing every edge ðv; uÞ 2 EðGÞ as
ðu; vÞ 2 EðGT Þ (Line 7). Then, it assigns a different rlevelto

every vertex in G using the transposition graph GT . Like the
first BFS, it adds a virtual vertex t, and adds an edge ðt; uÞ to
every vertex u with a negative label (labelðuÞ < 0) in GT .

Then, it assigns rlevel to every vertex in GT as follows. Let
rlevelðtÞ be �1. By BFS, it assigns rlevelðuÞ to be
rlevelðparentðuÞÞ þ 1, where parentðuÞ is the parent vertex of

u in GT following BFS. The resulting subgraph Gl to be
returned from l-Subgraph is extracted as follows. Here,
V ðGlÞ contains all vertices u in G if levelðuÞ þ rlevelðuÞ ¼ l
for the given length l, and EðGlÞ contains all edges ðu; vÞ if
both u and v appear in V ðGlÞ, ðu; vÞ is an edge in the given
graph G, and levelðuÞ þ 1 ¼ levelðvÞ (Lines 11-13). The fol-
lowing example illustrates how l-Subgraph algorithm works.

Example 4.2. Fig. 8 illustrates the Gl returned by l-Subgraph
(Algorithm 6) when l ¼ 2. It is constructed using two

BFS, i.e., BFS (G; s) and BFS (GT ; t), and the associated
BFS-trees with level � 2 and rlevel � 2 are shown in
Figs. 7a and 7b, respectively. In Fig. 7a, vertices v1 and v7
are the only vertices with label < 0. In Fig. 7b, vertex v4
is the only one with label > 0. Therefore, Gl contains
only four edges, in dashed lines, which is much smaller
than the original graph G to be handled.

Lemma 4.2. By l-Subgraph, the resulting subgraph Gl includes
all pn-paths of length l in G.

Proof Sketch. Recall that l-Subgraph returns a graph Gl

where V ðGlÞ ¼ fu j levelðuÞ þ rlevelðuÞ ¼ lg and EðGlÞ ¼
fðu; vÞ j u 2 V ðGlÞ; v 2 V ðGlÞ; ðu; vÞ 2 EðGÞ; levelðuÞ þ 1 ¼
levelðvÞg. It implies the following. All vertices in Gl are
on at least one shortest path from a positive label vertex
u (labelðuÞ > 0) to a negative label vertex v (labelðvÞ < 0)
of length l. All edges are on such shortest paths. No any
edge in a pn-pathof length l will be excluded from Gl. In
other words, there does not exist an edge ðu0; v0Þ on
pn-pathðu; vÞ of length l, which does not appear in EðGlÞ.

We explain PN-path-D (Algorithm 5). Based on Gl

obtained from G using l-Subgraph (Algorithm 6), in

PN-path-D, we delete all possible pn-paths of length l
from G (Lines 2-13). The deletion of all pn-paths of length
l from the given graph G is done using DFS over Gl with
a queue Q. It first pushes all vertices u in V ðGlÞ with a
positive label (labelðuÞ > 0) into queue Q, because they
are the starting vertices of all pn-paths with length l. We
check the vertex u on the top of queue Q. With the vertex
u, we do DFS starting from u over Gl, traverse unvisited
edges in Gl, and mark the edges visited as “visited”. Let
p be the first pn-pathðu; vÞ with length l along DFS. We
delete all edges on p, and adjust the labels as to reduce
labelðuÞ by 1 and increase labelðvÞ by 1. We dequeue u
from queue Q until we cannot find any more pn-paths of
length l starting from u, i.e., p returned by DFS ðuÞ is
empty. It is important to note that we only visit each
edge at most once. There are two cases. One is that the
edges visited will be deleted and there is no need to
revisit. The other is that they are marked as “visited” but
not included in any pn-paths with length l. For this case,
these edges will not appear in any other pn-paths starting
from any other vertices. tu

Algorithm 6. l-Subgraph (G; l)

1: for each vertex u in V ðGÞ do
2: levelðuÞ  1, rlevelðuÞ  1;
3: end for
4: Add a virtual vertex s and an edge ðs; uÞ from s to every

vertex u in G if labelðuÞ > 0;
5: levelðsÞ  �1;
6: levelðuÞ  levelðparentðuÞÞ þ 1 for all vertices u in G fol-

lowing BFS staring from s;
7: Construct a graph GT where V ðGT Þ ¼ V ðGÞ and EðGT Þ ¼
fðu; vÞjðv; uÞ 2 EðGÞg;

8: Add a virtual vertex t and an edge ðt; uÞ from s to every ver-

tex u in GT if labelðuÞ < 0;
9: rlevelðtÞ  �1;
10: rlevelðuÞ  rlevelðparentðuÞÞ þ 1 for all vertices u in GT fol-

lowing BFS staring from t;
11: Extract a subgraph Gl;
12: V ðGlÞ ¼ fu j levelðuÞ þ rlevelðuÞ ¼ lg;
13: EðGlÞ ¼ fðu; vÞ j u 2 V ðGlÞ; v 2 V ðGlÞ; ðu; vÞ 2 EðGÞ;

levelðuÞ þ 1 ¼ levelðvÞg;
14: return Gl;

Lemma 4.3. By PN-path-D, all pn-paths of length l are deleted.

Proof Sketch. It can be proved based on DFS over Gl

obtained from l-Subgraph. tu
Lemma 4.4. By PN-path-D, the resulting G does not include

any pn-paths of length � l.

Fig. 8. An l-Subgraph for length l ¼ 2:
Fig. 7. BFS-Trees used for constructing l-Subgraph.
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Proof Sketch. Let G0i be the resulting graph of PN-path-D
after deleting all pn-paths of length i from G. It is trivial
when i ¼ 1. Assume that it holds for G0i when i < l. We
prove that G0i holds when i ¼ l. First, there are no
pn-paths of length � l� 1 in graph G0l�1 as a result of PN-
path-D by assumption. Second, G0l � G0l�1 because G0l is
obtained by deleting pn-paths of length l from G0l�1, as
given in the Greedy-D algorithm (Algorithm 4). Further-
more, in PN-path-D, every vertex u with labelðuÞ ¼ 0 in
G0l�1 keeps labelðuÞ ¼ 0 in G0l. If there is a pn-pathðu; vÞ of
length � l� 1 found in G0l, then it must be in G0l�1, which
contradicts the assumption. Therefore, G0l does not
include any pn-paths of length � l. tu

Theorem 4.2. The PN-path-D algorithm correctly identifies a
subgraph Gl which contains all pn-paths of length l and
returns a graph includes no pn-paths of length � l.

Proof Sketch. It can be proved by Lemma 4.2 and
Lemma 4.4. tu
We discuss the time complexity of the Greedy-D algo-

rithm. Here, the number of iterations calling PN-path-D is
equivalent to the maximum length lmax in the Greedy-D algo-
rithm, which is closely related to the diameter of graph G.
With a loose bound, it is OðlognÞ. But, with the property of
small world, max is very small. In our experiments, lmax is
much less than 100, with the max value of 275. Here, we
treat lmax as a constant. The time complexity of the Greedy-D
algorithm is OðnþmÞ. Here, both PN-path-D and l-Subgraph
cost OðnþmÞ, because l-Subgraph invokes BFS twice and
PN-path-D performs DFS once in addition.

Algorithm 7. Greedy-R (G)

1: l 1;
2: Assign an initial value of �1 to the weight wðvi; vjÞ for every

edge ðvi; vjÞ 2 E;
3: while some vertex u 2 Gwith labelðuÞ > 0 do
4: G PN-path-R (G, l); {PN-path-R is the same as PN-path-D

(Algorithm 5) except that in Algorithm 5, Line 7 is
changed to be “reverse all edges in pn-paths ðu; vÞ in G,
both weights and directions”}

5: l lþ 1;
6: end while
7: Remove edges ðvi; vjÞ from G if wðvi; vjÞ ¼ þ1;
8: return G;

4.1.2 The Greedy-R Algorithm

The Greedy-R algorithm is shown in Algorithm 7. Like
Greedy-D, Greedy-R will result in an Eulerian subgraph.
Unlike Greedy-D, it reverses the edges on pn-paths of length
l from l ¼ 1 until there does not exist a vertex u in G with
labelðuÞ > 0. Initially, Greedy-R assigns every edge, ðvi; vjÞ,
in G with a weight wðvi; vjÞ ¼ �1. Then, in the while loop, it
calls PN-path-R. PN-path-R is the same as PN-path-D (Algo-
rithm 5) except that in Algorithm 5 Line 7 is changed to be
“reverse all edges in pn-pathðu; vÞ in G, both weights and
directions”. As a result, Greedy-R identifies an Eulerian sub-

graph of G, eUðGÞ. Here, Eð eUðGÞÞ contains all edges with a

weight ¼ �1 and V ð eUðGÞÞ contains all the vertices in

Eð eUðGÞÞ. Below, we prove the correctness of Greedy-R.

Lemma 4.5. By PN-path-R, the resultingG does not include any
pn-paths of length � l.

The proof can be found in [28].
Similar to Theorem. 4.2, PN-path-R algorithm correctly

identifies a subgraphGl which contains all pn-paths of length
l and returns a graph includes no pn-paths of length� l.

Theorem 4.3. The PN-path-R algorithm correctly identifies a
subgraph Gl which contains all pn-paths of length l and
returns a graph includes no pn-paths of length � l.

We omit the proof of Theorem. 4.3 since it can be proved
in a similar manner like Theorem. 4.2 using Lemma 4.5.

Algorithm 8. Refine ( eUðGÞ, G)

Input: A graph G, and the Eulerian subgraph obtained by

Greedy, eUðGÞ
Output: Two subgraphs of G, UðGÞ and GD (G ¼ UðGÞ [GD)
1: for each edge ðvi; vjÞ in EðGÞ do
2: if ðvi; vjÞ 2 eUðGÞ then
3: reverse the edge to be ðvj; viÞ in G; wðvj; viÞ  þ1;
4: else
5: wðvi; vjÞ  �1;
6: end if
7: end for
8: Assign dstðuÞ for every u 2 V ðGÞ based on Eq. (1);
9: for each vertex u in V ðGÞ do relaxðuÞ  true, posðuÞ  0;
10: Enqueue every vertex u in V ðGÞ into a queue Q;
11: u Q.front();
12: while Q 6¼ ; do
13: SV  ;, SE  ;,NV  ;;
14: if relaxðuÞ ¼ true and FindNC (G, u) then
15: Reverse negative cycle and change the edge weights

using SV and SE (refer to Algorithm 1);
16: Q  Q[ SV ;
17: else
18: Q.pop(); u Q.front();
19: end if
20: end while
21: GD is a subgraph that contains all edgeswith a weight of�1;
22: UðGÞ is a subgraph that contains the edges reversed for all

edges with a weight of þ1;

It is worth noticing that eUðGÞ obtained by Greedy-R is at
least as good as that obtained by Greedy-D. If each edge in

G� eUðGÞ is reversed once, then the eUðGÞ obtained by
Greedy-R is equivalent to that obtained by Greedy-D, as each
edge appears in at most one pn-path. On the other hand, if
there are some edges being reversed more than once,
Greedy-R performs better. Fig. 9 shows the difference
between Greedy-D and Greedy-R. Since pn-paths of length 1

Fig. 9. eUðGÞ returned by Greedy-D and Greedy-R.
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and 2 are the same, we only show the last deleted/reversed
pn-path. In Fig. 9a, we delete pn-pathðv8; v7Þ ¼ ðv8; v11; v12;
v13; v14; v7Þ. On the other hand, in Fig. 9b, we reverse
pn-pathðv8; v7Þ ¼ ðv8; v10; v3; v4; v9; v7Þ. Here edge ðv4; v3Þ is
reversed twice. eUðGÞ returned by Greedy-R consists of solid
lines, which is better than that returned by Greedy-D.

4.2 The Refine Algorithm

Subgraph eUðGÞ found by Greedy (step 3 in Algorithm 3) is
Eulerian since dIðuÞ ¼ dOðuÞ satisfies for each vertex u ineUðGÞ. Meanwhile, eGD ¼ G� eUðGÞ, the subgraph consist of
edges deleted/reversed, is near-acyclic, thus move all cycles

from eGD to eUðGÞ (step 4 in Algorithm 3) utilizing DS-U is

efficient. Such precessing is necessary since eGD needs to be
acyclic to simplify the discussion in Section 4.3 (ensure all

cycles found in G are k-cycles). Besides, eGD can also be taken
as an approximate hierarchy structure for massive graphs.

With the greedy Eulerian subgraph eUðGÞ found , we have

insight on G because we know G ¼ eUðGÞ [ eGD where eGD is
a DAG (acyclic), and can design a Refine algorithm based on
such insight, to reduce the number of times to update
dstðuÞ, which reduces the cost of relaxing. The Refine algo-
rithm (Algorithm 8) is designed based on the similar idea
given in DS-U using FindNC with two following
enhancements.

First, we utilize G ¼ eUðGÞ [ eGD to initialize the edge
weight wðvi; vjÞ for every edge ðvi; vjÞ and dstðuÞ for every
vertex u in G. The edge weights are initialized in Line 1–7 in

Algorithm 8 based on eUðGÞ which is a greedy Eulerian sub-

graph. We also make use of eGD to initialize dstðuÞ based on
Eq. (1) in Line 8.

dstðuÞ ¼
0 if dIðuÞ in eGD is 0;

minfdstðvÞ � 1jðv; uÞ 2 eGDg u 2 eGD;

0 otherwise.

8>><>>:
(1)

Some comments on the initialization are made below. Fol-
lowing Algorithm 1, dstðuÞ can be initialized as dstðuÞ ¼ 0.
As we proved in [28], no matter what dstðviÞ is for a vertex vi
(1 � i � k� 1) in a negative cycle C ¼ ðv1; v2; . . . ; vk ¼ v1Þ,
the negative cycle can be identified because there is at least
one edge ðvi; viþ1Þ that can be relaxed. Based on it, if we ini-
tialize dstðuÞ in a way such that dstðuÞ � dstðvÞ þ wðv; uÞ,
then u cannot be relaxed through ðv; uÞ before updating
dstðvÞ. It reduces the number of times to update dstðuÞ, and
improves the efficiency. We explain it further. Because for

any edge, ðv; uÞ 2 eGD, u can never be relaxed through edge
ðv; uÞ before dstðvÞ being updated, FindNC (G; u) will relax
edges along a path with a few branches to identify a
negative-cycle. The variables such as relaxðuÞ and posðuÞ are
initialized in Line 9 as done in Algorithm 1.

Second, we use a queueQ to maintain candidate vertices,
u, from which there may exist negative-cycles, if
relaxðuÞ ¼ true. Initially, all vertices are enqueued intoQ. In
each iteration, when invoking FindNC (G; v), let V 0 be the set
of vertices relaxed. Among V 0, for any vertex w 2 SV n fvg,
dstðwÞ has been updated and it has only relaxed partial out-
neighbors when finding the negative cycle. On the other

hand, for any vertex w 2 V 0 n SV , all of the out-neighbors of
w have been relaxed and cannot be relaxed before updating
dstðwÞ. We exclude w 2 V 0 n SV from Q implicitly by setting
relaxðwÞ ¼ false in FindNC (G;w).

Example 4.3. Suppose we have a greedy Eulerian subgrapheUðGÞ (Fig. 6) of G (Fig. 1) by Greedy-D, and will refine it
to the optimal UðGÞ using Refine. Initially, all edges (solid

lines) in eUðGÞ are reversed with initial þ1 edge weight,

and all remaining edges in eGD are initialized with �1
edge weight. dstðv1Þ ¼ �2; dstðv3Þ ¼ �1; dstðv7Þ ¼
�5; dstðv11Þ ¼ �1; dstðv12Þ ¼ �2; dstðv13Þ ¼ �3; dstðv14Þ ¼
�4, and other vertices u have dstðuÞ ¼ 0. In the while
loop, FindNC (G; v1) relaxes dstðv5Þ ¼ �1 and returns
false. This makes relaxðv1Þ ¼ relaxðv5Þ ¼ false by which
v1 and v5 are dequeued from Q. Afterwards, none of
v2; v3; v4; v6 can relax any out-neighbors, and all are
dequeued from Q. FindNC (G; v7) relaxes all vertices,
finds a negative cycle ðv7; v9; v4; v2; v3; v10; v8; v11; v12;
v13; v14; v7Þ, and adds v2; v3; v4 into Q as new candidates.
Then, no vertices from v8 to v14 can relax any out-neigh-
bors until FindNC (G; v2) finds the last negative cycle
ðv2; v4; v3; v2Þ. For most cases, FindNC (G; u) relaxes a few
of u’s out-neighbors.

We discuss the time complexity of Refine. The initializa-
tion (Lines 1–9) is OðnþmÞ. Since eUðGÞ approximates
UðGÞ, the number of negative-cycles found by Refine will

be no more than jEðUðGÞÞj � jEð eUðGÞÞj, and vertices u will

have dstðuÞ updated less than jEðUðGÞÞj � jEð eUðGÞÞj times.
This implies the while loop costs OðjEðUðGÞÞj �
jEð eUðGÞÞj �mÞ. Time complexity of Refine is Oðcm2Þ, where
c� 1, as confirmed in our testing.

4.3 The Bound between Greedy and Optimal

We discuss the bound between eUðGÞ obtained by Greedy
and the maximum Eulerian subgraph UðGÞ. To simplify our
discussion, below, a graph G is a graph with multiple edges
between two vertices but without self loops, and every edge
ðvi; vjÞ is associated with a weight wðvi; vjÞ, which is initial-

ized to be �1. Given a graph G, we use G to represent the

reversed graph of G such that V ðGÞ ¼ V ðGÞ and EðGÞ con-
tains every edge ðvj; viÞ if ðvi; vjÞ 2 EðGÞ, and
wðvj; viÞ ¼ �wðvi; vjÞ. In addition, we use two operations, �
and 	, for two graphs Gi and Gj. Here, Gij ¼ Gi �Gj is an
operation that constructs a new graph Gij by union of two
graphs, Gi and Gj, such that V ðGijÞ ¼ V ðGiÞ [ V ðGjÞ, and
EðGijÞ ¼ EðGiÞ [ EðGjÞ. And G0 ¼ Gi 	Gj is an operation
that constructs a new graph G0 by removing a subgraph Gj

from Gi (Gj � Gi) such that V ðG0Þ ¼ V ðGiÞ and
EðG0Þ ¼ EðGiÞ n EðGjÞ. Given two Eulerian subgraphs, Gi

and Gj, it is easy to show that Gi �Gj and Gi 	Gj are still

Eulerian graphs. Given any graph G, G�G is an Eulerian
graph. Note that assume that there is a cycle with two
edges, ðvi; vjÞ and ðvj; viÞ, between two vertices, vi and vj, in

G. there will be four edges in G�G, i.e., two edges are

from G and two corresponding reversed edges from G.
We discuss the bound using an Eulerian graph

G ¼ GP �GN , where GP ¼ G	 eUðGÞ and GN ¼ G	 UðGÞ.
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We call every edge in GN a negative edge (n-edge), and a
path in GN a negative path (n-path). We also call every edge

in GP a positive edge (p-edge), and a path in GP a positive
path (p-path). It is important to note that p-edges are given

for GP but not for GP , all n-edges are with a weight of �1,
while all p-edges are with a weight of þ1, because they are
the reversed edges in GP . Here, G is a graph with multiple
edges between a pair of vertices.

Example 4.4. In Fig. 10, the solid edges represent the

p-edges from GP , and the dashed edges represent the
n-edges from GN .

Since G is Eulerian, it can be divided into several edge
disjoint simple cycles as given by Lemma 4.1. Among these
cycles, there are no cycles in G with only n-edges, because
they must be in UðGÞ if they exist. And there are no cycles
in G with only p-edges, because all such cycles have been

moved into eUðGiÞ in GR-U (Algorithm 3, Line 4).
Next, let a cycle be a positive-cycle if the total weight of

the edges in this cycle > 0, and let it be a negative-cycle if
its total weight of edges < 0. We show there are no
negative-cycles in G.
Lemma 4.6. There does not exist a negative-cycle in G.
Proof Sketch. Assume there is a negative-cycle in G, de-

noted as Gcyc. Since there are no cycle with only p-edges
or n-edges, there are p-edges and n-edges in Gcyc. We
divide Gcyc into two subgraphs, Gp and Gn. Here Gp con-
sists of all p-edges, where each p-edgeis with a +1 weight,
andGn consists of all n-edges, where each n-edgeis with a
�1 weight. Clearly, jEðGpÞj < jEðGnÞj, since it assumes
that Gcyc is a negative-cycle. Note that UðGÞ 	Gp �Gn,
which is equivalent to UðGÞ �Gcyc 	 ðGp �GpÞ, is
Eulerian, and it contains more edges than UðGÞ, resulting
in a contradiction. Therefore, there does not exist a
negative-cycle in G. tu
Lemma 4.6 shows all cycles in G are non-negative. Since

there are no cycles with only p-edges or n-edges, each
cycle in G can be partitioned into an alternating sequence
of k p-paths and k n-paths, and represented as

ðvþ1 ; v�1 ; vþ2 ; . . . ; vþk ; v�k ; vþ1 Þ, where ðvþi ; v�i Þ, for i ¼ 1; 2; . . . ; k,

are n-paths, and ðv�i ; vþiþ1Þ, for i ¼ 2; . . . ; k� 1, k, plus

ðv�k ; vþ1 Þ are p-paths. We call such cycle a k-cycle. Fig. 11a
shows an example of k-cycle, and an arrow presents a path.
p-paths are in solid lines while n-paths are in dashed lines.

The difference jEðUðGÞÞj � jEð eUðGÞÞj is equal to jEðG 	eUðGÞÞj � jEðG	 UðGÞÞj ¼ jEðGP Þj � jEðGNÞj ¼ jEðGP Þj �
jEðGNÞj, becomes the total number of edges in GP minus

the total number of edges in GN . On the other hand, the dif-

ference jEðUðGÞÞj � jEð eUðGÞÞj can be considered as the total
weight of all k-cycles in G. Recall that all edges in G are with

weight �1 and the edges in G are with weight þ1 by our
definition. Assume that G ¼ fC1; C2; . . .g, where Ci is a
k-cycle. The total weight of G regarding all k-cycles is

wðGÞ ¼P
i wðCiÞ. Below, we bound jEðUðGÞÞj � jEð eUðGÞÞj

using k-cycles.
Consider G in Fig. 10, there are three k-cycles.

C1 ¼ ðv3; v1; v3Þ and C2 ¼ ðv3; v2; v3Þ with weight 0, and
C3 ¼ ðv8; v11; v12; v13; v14; v7; v9; v4;v3; v10; v8Þ with weight 2.
This means that it needs at most two more iterations to get
the maximum Eulerian subgraph from the greedy solution.

For a k-cycle ðvþ1 ; v�1 ; vþ2 ; . . . ; vþk ; v�k ; vþ1 Þ, we use ~k and
~0

k to represent the total weight of n-edges1 and p-edges,

i.e. ~k ¼
P

i¼1;...;k wðvþi ; v�i Þ and ~0
k ¼

P
i¼1;...;k�1 wðv�i ; vþiþ1Þ

þwðv�k ; vþ1 Þ. Because ~k is determined by the optimal in
jEðGNÞj ¼ jEðG	 UðGÞÞj, the bound is obtained when get-

ting the maximum of~0
k.

Theorem 4.4. The upper bound of the total weight of p-edges in
a k-cycle with specific k is k times that of n-edges, i.e.,
~0

k � k �~k

The proof can be found in [28].
Let ~0

Ci
and ~Ci

denote the total weight of p-edges and

n-edges in a k-cycle Ci. Bounding jEðUðGÞÞj- jEð eUðGÞÞj can
be formulated as an LP (linear programming) problem.

max
X
Ci

ð~0
Ci
�~Ci

Þ

s:t: (Cond-1) ~0Ci
> ~Ci

; 8i;
(Cond-2) ~0Ci

� ki �~Ci
; for k- cycle Ci with k-value ki,

(Cond-3)
X
Ci

ð~0Ci
þ~Ci

Þ � jEðGÞj � jEj:

In Fig. 13a, Bt at y-axis illustrates the theoretical upper

bound of jEðUðGÞÞj � jEð eUðGÞÞj ¼ K�1
Kþ1 jEj by solving the LP

problem, where the three solid lines represent the three con-
ditions in the above LP problem, respectively. Here, K is
the maximum among all k values. The theoretical upper
bound is far from tight. First, jEðGÞj � jEj, which is a tighter

upper bound of
P

Ci
ð~0Ci

þ~Ci
Þ, moving Cond-3 towards

the origin. Second, for most k-cycles, ~0
k ¼ ð1þ �Þ �~k,

0 < � < 1, since most p-paths in a k-cycle are far from the
upper bound it can get. This leads Cond-2 moving towards
x-axis. Therefore, a tighter empirical upper bound is Bp at
y-axis in Fig. 13b. We will show it in the experiments.

We have proved Theorem 4.4 for the case p-paths and
n-paths are pn-paths, which shows that each p-path in a

Fig. 10. G ¼ GP �GN where GP ¼ G	 eUðGÞ and GN ¼ G	 UðGÞ.

Fig. 11. k-cycle.

1. For n-edges, we take the absolute value of total weight.
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k-cycle has an implicit upper bound. In general, there are a
small number of cases where p-paths are not pn-paths. For
the cases when a p-path in a k-cycle is not a pn-path, we use
wp and wu to denote its practical weight and the theoretical
upper bound it can reach when itself is a pn-path, respec-
tively. Since we concentrate on weight of p-paths, we treat
such a p-path as a pn-path with weight wp if wp < wu, and
treat it as a pn-path with weight wu if wp > wu and add the
difference wp � wu to a global variable W . We will show in
Section 5 thatW is very small compared with jEðUðGÞÞj.

Time complexity: Revisit GR-U (Algorithm 3), it includes
four parts: SCCdecomposition (Line 1), Greedy (Line 3),
cycle moving (Line 4) and Refine (Line 5). SCC decomposi-
tion can be accomplished in two DFS, in time OðnþmÞ. As
analyzed in Section 4, Greedy invokes lmax times PN-path,
and each PN-path needs two BFS (l-Subgraph) and one DFS
(remove/reverse pn-paths). Since lmax is small (< 100 in our
extensive experiments), the time complexity of Greedy is

OðnþmÞ. Regarding moving cycles from Gi � eUðGiÞ toeUðGiÞ, it is equivalent to moving cycles from non-trivial

SCCs of Gi � eUðGiÞ to eUðGiÞ. Based on the fact that

Gi � eUðGiÞ is near acyclic, there are a few cycles in

Gi � eUðGiÞ, cycle moving is in OðnþmÞ. The time complex-

ity of Refine, as given in Section 4.2 is Oðcm2Þ, because most
FindNC (G; u) relax edges along a path with a few branches
and vertices u will have dstðuÞ updated less than

jEðUðGÞÞj � jEð eUðGÞÞj times.

5 PERFORMANCE STUDIES

We conduct extensive experiments to evaluate two pro-
posed GR-U algorithms. One is GR-U-D using Greedy-D
(Algorithm 4) and Refine (Algorithm 8), and the other is GR-
U-R using Greedy-R (Algorithm 7) and Refine (Algorithm 8).
We do not compare our algorithms with BF-U in [18],
because BF-U is in Oðnm2Þ and is too slow. We use our DS-

U as the baseline algorithm, which is Oðm2Þ. We show that
Greedy produces an answer which is very close the the exact

answer. In order to confirm Greedy is of time complexity
OðnþmÞ, we show the largest iteration lmax used in Greedy
is a small constant by showing that the longest pn-path (the
same as lmax) deleted/reversed by Greedy is small. In addi-

tion, we confirm the constant c of Oðc �m2Þ for Refine is very
small by showing statistics of G, W , and k-cycles. We also
confirm the scalability of GR-U as well as Greedy and Refine.

All these algorithms are implemented in C++ and com-
plied by gcc 4.8.2, and tested on machine with 3.40 GHz
Intel Core i7-4770 CPU, 32 GB RAM and running Linux.
The time unit used is second.

Datasets: We use 16 real datasets. Among the datasets,
wiki-Vote, Epinions, Slashdot0811, Slashdot0902, Pokec,
Google+, Weibo, Youtube and Flickr are social networks;
web-NotreDame, web-Stanford, web-Google, and web-
BerkStan are web graphs; Gnutella is a peer-to-peer net-
work; amazon is a product co-purchasing network; and
Wiki-Talk is a communication network. All the datasets are
downloaded from Stanford large network dataset collection
(http://snap.stanford.edu/data) except for Google+,
Weibo, Youtube and Flickr. Youtube and Flickr are from
[30]. The detailed information of the datasets are summa-
rized in Tables 1 and 2. In the tables, for each graph, the 2nd
and 3rd columns show the numbers of vertices and edges,2

respectively, and the 4th and 5th columns show the num-
bers of vertices and edges of its maximum Eulerian sub-
graph, respectively, and the 6th column shows the number
of vertices in GD.

Efficiency: Table 3 shows the efficiency of these three algo-
rithms, i.e., GR-U-D, GR-U-R, and DS-U, over 16 real data-
sets. For GR-U-D, the 2nd column shows the running time
of Refine and the 3rd column shows the total running time
of GR-U-D. As can be seen, for GR-U-D, the running time of
Refine dominates that of Greedy-D. The 4th and 5th columns
show the running time of Refine and the total running time
of GR-U-R, respectively. Likewise, the Refine algorithm is
the most time-consuming procedure in GR-U-R. It is impor-
tant to note that both GR-U-D and GR-U-R significantly out-
perform DS-U. In most large datasets, GR-U-D and GR-U-R

Fig. 13. Upper bounds.

Fig. 12. k-cycle generated by Greedy-R.

TABLE 3
Efficiency of GR-U-D, GR-U-R, and DS-U

Graph Refine GR-U-D Refine GR-U-R DS-U c

wiki-Vote 0.1 0.1 0.1 0.1 1.0 0.100

Gnutella 0.5 0.5 0.4 0.4 1.6 0.250

Epinions 15.9 16.1 15.2 15.4 414.4 0.037

Slashdot0811 80.6 80.8 70.9 71.0 12,748.6 0.006

Slashdot0902 87.3 87.5 76.6 76.8 14,324.5 0.005

web-NotreDame 2.6 3.0 2.4 2.7 370.4 0.007

web-Stanford 21.5 25.7 16.7 24.9 2,780.0 0.009

amazon 126.5 133.5 124.8 130.5 44,865.0 0.003

Wiki-Talk 504.3 504.9 487.3 487.9 9,120.1 0.053

web-Google 100.2 110.3 78.6 84.6 35,271.7 0.002

web-BerkStan 129.7 137.7 67.8 75.9 7,853.9 0.010

Youtube 4,617.1 4,620.3 4,073.4 4,076.1 - -

Flickr 76,984.3 76,996.4 66,875.0 66,888.1 - -

Pokec 30,954.5 30,983.7 30,120.4 30,140.5 - -

Gplus2 363.5 364.2 360.5 361.2 39,083.8 0.009

Weibo0 206.5 207.3 202.4 203.3 8,004.6 0.025

2. For each dataset, we delete all self-loops if exist.
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are two orders of magnitude faster than DS-U. For instance,
in web-Stanford dataset, GR-U-R takes 25 seconds to find
the maximum Eulerian subgraph, while DS-U takes
2,780 seconds, which is more than 100 times slower. In addi-
tion, it is worth mentioning that in YouTube, Flickr and
Pokec dataset, DS-U cannot get a solution in 24 hours. In
the 6th column, c is the c value in Refine’s time complexity

Oðcm2Þ, by comparing running time of GR-U-R and DS-U.
In all graphs, c� 1. Note BF-U is very slow, for example,
BF-U takes more than 30,000 seconds to handle the smallest
dataset wiki-Vote, while our GR-U takes only 0.1 second.

Effectiveness of Greedy: To evaluate the effectiveness of the
greedy algorithms, we first study the size of Eulerian sub-
graph obtained by Greedy-D and Greedy-R. Fig. 14 depicts
the results. In Fig. 14, jEð eUðGÞÞj denotes the size of Eulerian
subgraph obtained by the greedy algorithms, jEðUðGÞÞj
denotes the size of the maximum Eulerian subgraph, and

jEð eUðGÞÞj=jEðUðGÞÞj denotes the ratio between them. The
ratios obtained by both Greedy-D and Greedy-R are very
close to 1 in most datasets. That is to say, both Greedy-D and
Greedy-R can get a near-maximum Eulerian subgraph, indi-
cating that both Greedy-D and Greedy-R are very effective.
The performance of Greedy-R is slightly better than that of
Greedy-D, which supports our analysis. The ratio of Gnutella
dataset using Greedy-D is slightly lower than others. One
possible reason is that Gnutella is much sparser than other
datasets, thus some inappropriate pn-path deletions may
result in enlarging other pn-paths, and this situation can be
largely relieved in Greedy-R.

Second, we investigate the numbers of iterations used in
GR-U-D, GR-U-R, and DS-U. Table 4 reports the results. In
Table 4, the 2nd and 4th columns ‘IRD’ and ‘IRR’ denote the
numbers of iterations used in the refinement procedure (i.e.,
Refine, Algorithm 8) of GR-U-D and GR-U-R, respectively.
The last column ‘IR_DSU’ reports the total number of itera-
tions used in DS-U. From these columns, we can see that in
large graphs (e.g., web-NotreDame dataset), the numbers of
iterations used in Refine of GR-U-D and GR-U-R are at least
two orders of magnitude smaller than those used in DS-U.
In addition, it is worth mentioning that in Pokec dataset,
DS-U cannot get a solution in two weeks. The 3rd and 5th
columns report the percentages of iterations saved by GR-
U-D and GR-U-R, respectively. Both Greedy-D and Greedy-R
can reduce at least 95 percent iterations in most datasets.
Similarly, the results obtained by GR-U-R are slightly better
than those obtained by GR-U-D.

The largest iteration lmax: We show the largest iteration
lmax in Greedy by showing the longest pn-paths deleted/
reversed, which is the numbers of PN-path-D/PN-path-R
invoked by Greedy-D/Greedy-R using the real datasets.
Below, the first/second number is the longest pn-paths
deleted/reversed. wiki-Vote (9/9), Gnutella (29/22), Epi-
nions (12/10), Slashdot0811 (6/6), Slashdot0902 (8/8), web-
NotreDame (96/41), web-Stanford (275/221), amazon (57/
37), Wiki-Talk (9/7), web-Google (93/37), web-BerkStan
(123/85), Youtube (12/12), Flickr (17/17), Pokec (14/13),
Gplus2 (9/8), and Weibo0 (12/10). The longest pn-paths
deleted or reversed are always of small sizes, especially
compared with jEj. Therefore, the time complexity of Greedy
can be regarded as OðnþmÞ.

The support to a small c: We show the support that c given

in Oðcm2Þ for Refine is small by giving statistics of G, W , and

k-cycles. We first show the statistics of G ð¼ GP �GNÞ and
W discussed in Section 4.3. Table 5 reports the results. From
Table 5, we can find that for each graph, jEðGÞj and W are
small compared with jEðUðGÞÞj. These results confirm our
theoretical analysis in Section 4.3. Second, we study the sta-
tistics of k-cycles. The results of Epinions and web-Stanford
datasets are depicted in Fig. 15, and similar results can be
observed from other datasets. In Fig. 15, y-axis denotes the

TABLE 4
The Numbers of Iterations

Graph IRD ISD% IRR ISR % IR_DSU

wiki-Vote 659 95.4 629 95.6 14,361
Gnutella 2,504 69.5 1,410 82.8 8,202
Epinions 5,466 97.4 5,334 97.4 207,124
Slashdot0811 11,464 97.9 9,990 98.2 541,970
Slashdot0902 12,036 97.8 10,426 98.1 554,163
web-NotreDame 9,030 98.1 6,119 98.7 486,240
web-Stanford 23,427 94.8 15,721 96.5 448,960
amazon 75,104 94.1 61,818 95.2 1,282,326
Wiki-Talk 37,662 95.7 36,139 95.9 871,020
web-Google 90,375 92.4 59,387 95.0 1,196,616
web-BerkStan 69,078 95.2 41,703 97.1 1,437,188
Youtube 79,798 - 71,768 - -
Flickr 467,557 - 409533 - -
Pokec 686,765 - 635,286 - -
Gplus2 18,766 96.9 18,721 96.9 613,008
Weibo0 25,991 96.2 24,550 96.4 686,765

Fig. 14. jEð eUðGÞÞj=jEðUðGÞÞj.

TABLE 5
Statistics of jGj andW

Graph jEðUðGÞÞj jEðGÞj W

wiki-Vote 17,676 3,214 20
Gnutella 18,964 6,906 10
Epinions 264,995 30,997 129
Slashdot0811 734,021 45,315 118
Slashdot0902 748,580 46,830 145
web-NotreDame 783,788 10,439 3,963
web-Stanford 691,521 35,402 6,168
amazon 1,973,965 202,513 12,994
Wiki-Talk 1,083,509 158,848 331
web-Google 1,841,215 149,425 22,361
web-BerkStan 2,068,081 105,569 16,991
Youtube 3,954,923 288,798 17,947
Flickr 15,882,577 1,758,090 15,384
Pokec 20,911,934 3,003,797 8,964
Gplus2 770,854 117,641 80
weibo0 850,136 124,395 384
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ratio between the total weights of p-edges and the total

weights of n-edges (i.e., D0k=Dk defined in Section 4.3), and
the x-axis denotes k for k-cycles, where k ¼ 2; 3; . . . ; >¼ 10.
As can be seen, for all k-cycles, the ratios are always smaller
than two in both Epinions and web-Stanford datasets. These
results confirm our analysis in Section 4.3.

Scalability: We test the scalability for GR-U-R, GR-U-D,
and DS-U. We report the results for Epinions and Slash-
dot0811 in Fig. 16. Similar results are observed for other real
datasets. To test the scalability, we sample 10 subgraphs
starting from 10 percent of edges, up to 100 by 10 percent
increments. Figs. 16a and 16b show both GR-U-R and GR-
U-D scale well. For Epinions, we further show the perfor-
mance of Greedy and Refine in Figs. 16c and 16d. In Fig. 16c,
Greedy seems to be not really linear. We explain the reason
below. Revisit Algorithm 3, the efficiency of Greedy is
mainly determined by two factors, the graph size (or more
precisely the size of the largest SCC) and the number of
times invoking PN-path (i.e. lmax). When a subgraph is
sparse, both SCCsize and lmax tend to be small (the smallest
sample graph with 10 percent edges contains a largest
SCCwith 1,155 vertices and 4,317 edges, and lmax ¼ 30=16
for Greedy-D/Greedy-R), whereas, both the size of the largest
SCCand lmax tend to be large in dense subgraphs (the entire
graph contains a largest SCC with 53,968 vertices and
296,228 edges, and lmax ¼ 96=41 for Greedy-D/Greedy-R).

6 CONCLUSION

In this paper, we study social hierarchy computing to find a
social hierarchy GD as DAG from a social network repre-
sented as a directed graph G. To find GD, we study how to
find a maximum Eulerian subgraph UðGÞ of G such that
G ¼ UðGÞ [GD. We justify our approach, and give the prop-
erties ofGD and the applications. The key is how to compute
UðGÞ. We propose a DS-U algorithm to compute UðGÞ, and
develop a novel two-phase Greedy-&-Refine algorithm,
which greedily computes an Eulerian subgraph and then
refines this greedy solution to find the maximum Eulerian
subgraph. The quality of our greedy approach is high which
can be used to support social mobility and recover the hid-
den directions. We conduct extensive experiments to con-
firm the efficiency of our Greedy-&-Refine approach.
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